Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	200				
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.40				
Q _g (Max.) (nC)	43				
Q _{gs} (nC)	7.0				
Q _{gd} (nC)	23				
Configuration	Single				

SMD-220

S N-Channel MOSFET

FEATURES

- Surface Mount
- · Available in Tape and Reel
- · Dynamic dV/dt Rating
- · Repetitive Avalanche Rated
- · Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements
- · Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application.

ORDERING INFORMATION					
Package	SMD-220	SMD-220	SMD-220		
Lead (Pb)-free	IRF630SPbF	IRF630STRLPbF ^a	IRF630STRRPbF ^a		
	SiHF630S-E3	SiHF630STL-E3 ^a	SiHF630STR-E3 ^a		
SnPb	IRF630S	IRF630STRL ^a	IRF630STRR ^a		
SHED	SiHF630S	SiHF630STL ^a	SiHF630STR ^a		

Note

a. See device orientation.

T _C = 25 °C, u	nless otherw	ise noted		
PARAMETER			LIMIT	UNIT
		V _{DS}	200	V
		V _{GS}	± 20	v
Vac at 10 V	T _C = 25 °C	1-	9.0	
VGS at 10 V	T _C = 100 °C	D	5.7	А
Pulsed Drain Current ^a			36	
Linear Derating Factor			0.59	W/90
Linear Derating Factor (PCB Mount) ^e			0.025	− W/°C
Single Pulse Avalanche Energy ^b			250	mJ
Repetitive Avalanche Currenta			9.0	A
Repetitive Avalanche Energy ^a			7.4	mJ
T _C =	25 °C	P	74	14/
T _A =	T _A = 25 °C		3.0	
	V _{GS} at 10 V	$V_{GS} \text{ at } 10 \text{ V} \qquad T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$ $T_{C} = 25 \text{ °C}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c } \hline $YMBOL$ $LIMIT$ \\ V_{DS} 200 \\ V_{QS} ± 20 \\ \hline $I_{C} = 25\ ^{\circ}C$ } I_{D} $\frac{9.0}{5.7}$ \\ \hline I_{D} $\frac{9.0}{5.7}$ \\ \hline I_{DM} $\frac{36}{36}$ \\ \hline $I_{C} = 100\ ^{\circ}C$ I_{DM} $\frac{100\ ^{\circ}C$ I_{C} $\frac{100\ ^{\circ}C$ I_{DM} $\frac{100\ ^{\circ}C$ $$

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS $T_C = 25 ^{\circ}C$, unless otherwise noted						
PARAMETER	SYMBOL	LIMIT	UNIT			
Peak Diode Recovery dV/dt ^c	dV/dt	5.0	V/ns			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C		
Soldering Recommendations (Peak Temperature)	for 10 s		300 ^d			

Notes

•

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \text{ °C}$, L = 4.6 mH, $R_G = 25 \Omega$, $I_{AS} = 9.0 \text{ A}$ (see fig. 12). c. $I_{SD} \le 9.0 \text{ A}$, dl/dt $\le 120 \text{ A}/\mu\text{s}$, $V_{DD} \le V_{DS}$, $T_J \le 150 \text{ °C}$.

d. 1.6 mm from case.

e. When mounted on 1" square PCB (FR-4 or G-10 material).

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient (PCB Mount) ^c	R _{thJA}	-	-	40		
Maximum Junction-to-Ambient	R _{thJA}	-	-	62	°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	-	1.7		

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static		•					
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250 μA	200	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.24	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 100	nA
		V _{DS} =	= 200 V, V _{GS} = 0 V	-	-	25	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 160V	′, V _{GS} = 0 V, T _J = 125 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 5.4 A ^b	-	-	0.40	Ω
Forward Transconductance	9 _{fs}	V _{DS} =	= 50 V, I _D = 5.4 A ^b	3.8	-	-	S
Dynamic					•	•	
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1.0 MHz, see fig. 5		-	800	-	pF
Output Capacitance	C _{oss}			-	240	-	
Reverse Transfer Capacitance	C _{rss}			-	76	-	
Total Gate Charge	Qg	$V_{GS} = 10 \text{ V}$ $I_D = 5.9 \text{ A}, V_{DS} = 160 \text{ V}$ see fig. 6 and 13 ^b		-	-	43	nC
Gate-Source Charge	Q _{gs}			-	-	7.0	
Gate-Drain Charge	Q _{gd}		See lig. 6 and 16	-	-	23	1
Turn-On Delay Time	t _{d(on)}	V_{DD} = 100 V, I _D = 5.9 A R _G = 12 Ω, R _D = 16 Ω see fig. 10 ^b		-	9.4	-	
Rise Time	tr			-	28	-	
Turn-Off Delay Time	t _{d(off)}			-	39	-	ns
Fall Time	t _f			-	20	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") from package and center of die contact		-	4.5	-	
Internal Source Inductance	L _S			-	7.5	-	nH

Vishay Siliconix

SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Drain-Source Body Diode Characteristics							
Continuous Source-Drain Diode Current	IS	MOSFET symbol showing the	-	-	9.0	A	
Pulsed Diode Forward Current ^a	I _{SM}	p - n junction diode	-	-	36	A	
Body Diode Voltage	V _{SD}	T_J = 25 °C, I_S = 9.0 A, V_{GS} = 0 V ^b	-	-	2.0	V	
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 5.9 A,	-	170	340	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	$dI/dt = 100 \text{ A}/\mu s^b$	-	1.1	2.2	μC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and $L_{\text{D}})$					

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

c. When mounted on 1" square PCB (FR-4 or G-10 material).

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

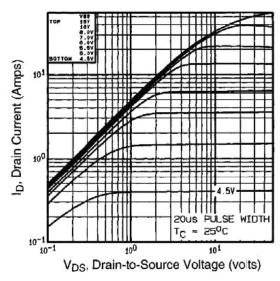


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

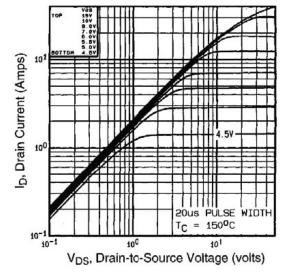


Fig. 2 - Typical Output Characteristics, T_C = 150 $^\circ C$

Vishay Siliconix

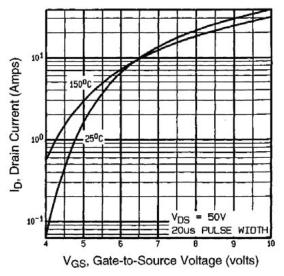


Fig. 3 - Typical Transfer Characteristics

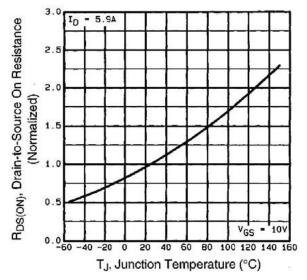


Fig. 4 - Normalized On-Resistance vs. Temperature

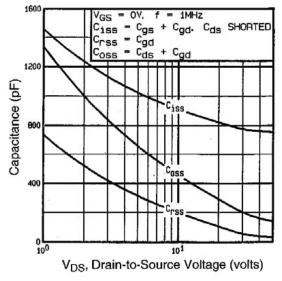


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

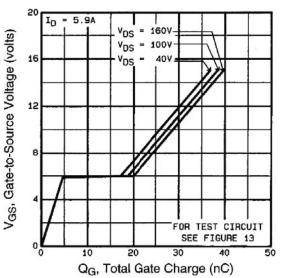


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Vishay Siliconix

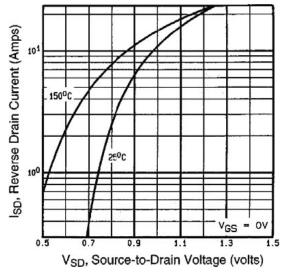
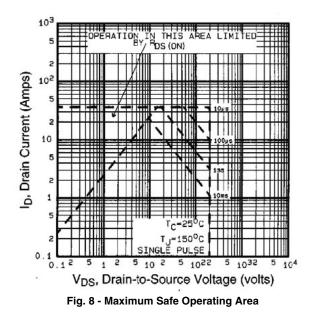



Fig. 7 - Typical Source-Drain Diode Forward Voltage

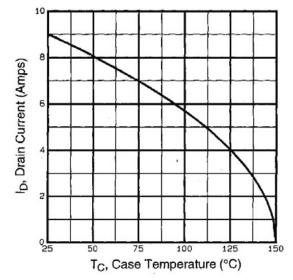


Fig. 9 - Maximum Drain Current vs. Case Temperature

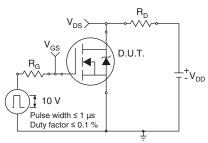


Fig. 10a - Switching Time Test Circuit

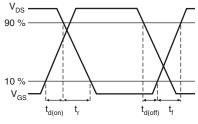


Fig. 10b - Switching Time Waveforms

Vishay Siliconix

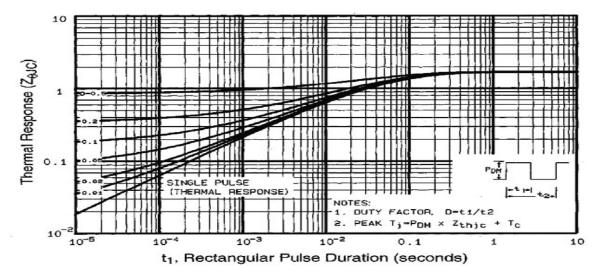


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

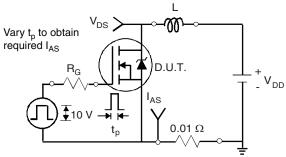


Fig. 12a - Unclamped Inductive Test Circuit

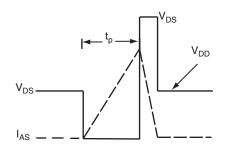


Fig. 12b - Unclamped Inductive Waveforms

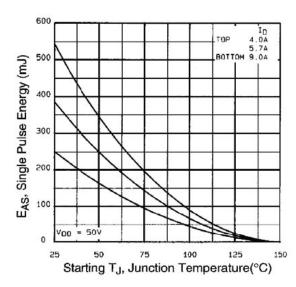


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Vishay Siliconix

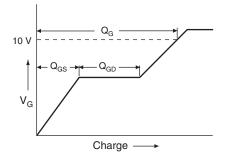


Fig. 13a - Basic Gate Charge Waveform

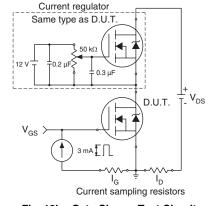
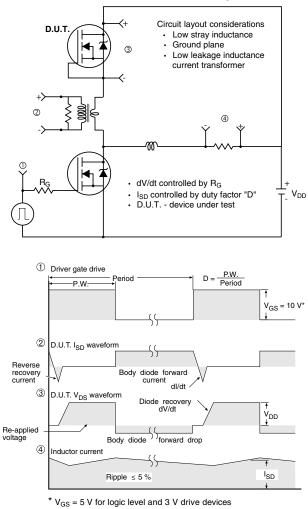



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91032.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.